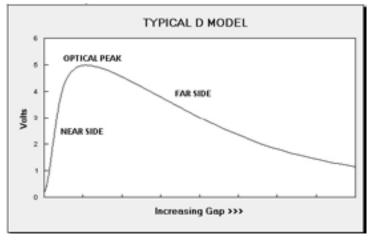
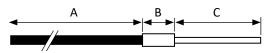
Fiberoptic Sensor - Reflectance Dependent*

Model DMS-D240



These sensors provide a linear distance output with RS232 or USB communication.


For The Measurement of Distance, Displacement and Vibration of Targets $> \emptyset$ 6.1 mm

Features

- Reflectance Dependent Output
- Ø 6.1 mm Target Spot Size (0.240 inch)
- 76 mm Total Operating Range
- Ambient Light Rejection

Tip & Cable Dimensions

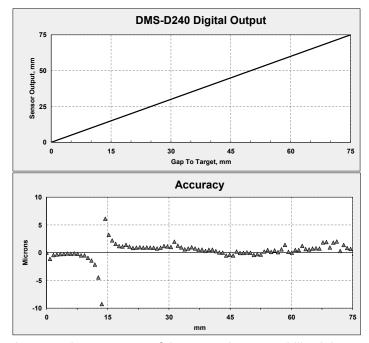
FEATURE	mm	inch	
Tip Outer Diameter, Ø C	7.92	0.312	
Fiberoptic Diameter	6.1	0.240	
Tip Length, C	76.2	3.0	
Collar Length, B	19.1	0.75	
Collar Diameter, Ø B	9.53	0.375	
Cable Length, A	914	36	
Cable Diameter, Ø A	8.6	0.340	
Cable Min. Bend Radius	40	1.6	

The analog input function includes NEAR and FAR SIDE regions. NEAR SIDE operation gives highest resolution with limited operating range. Operation on the FAR SIDE gives moderate resolution with much greater operating range.

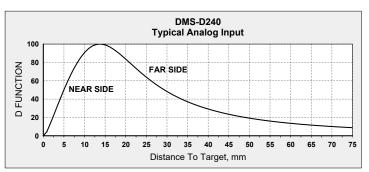
*These are reflective type transducers based upon detecting the intensity of reflected light. The output is proportional to:

- distance between the sensor tip and target; and,
- the reflectivity of the target surface.

AMBIENT LIGHT REJECTION


Incoming light signals are bandpass filtered at a wavelength of 850 ±22 nm.

DISTANCE (GAP) OUTPUT


These sensors provide a <u>linearized distance output</u> with RS232 or USB communication. Dynamic light signals reflected from target surfaces are converted to distance by comparing the sensor signals to gap calibration tables stored on-board the sensor.

www.philtec.com

Accuracy is a measure of the sensor's repeatability. It is measured at 2.5 samples/sec.

The chart above shows the analog signal input to the sensor's microprocessor. That signal is converted to a linearized distance output by comparing the input signals to gap calibration tables stored on-board the sensor. The sensor can be gapped for measurements anywhere within the sensor's total operating range. Optimum performance is achieved where the input signal has the steepest slope:

- Near Side ~1 10 mm
- Far Side ~15 to 50 mm

Standard Specifications, Model DMS-D240								
Electronics		Fiberoptics		USB or RS232		Near Side	Far Side	
Light Source	850 nm	Light Beam Spread	25°	Tota	l Range	13 mm	63 mm	
Input Voltage	+12 VDC	Cable Sheathing	PVC / Steel Monocoil	Linea	ır Range	13 mm	63 mm	
Input Current	500 ma max	Tip Epoxy Outgas	0.3% @ 200°C 2.4% @ 300°C	Reflectance Resolution		0.5%		
Bandwidth	5 KHz	Tip Operating Pressure	15 bar	Temperature Resolution		0.06°C		
Iso-thermal Drift	0.05%	Tip Operating Temperature	-55 to 200°C continuous; to 300°C intermittent 1-2 hours	ADC AVG 2 16 256 4096	Samples/Sec 5208 651 41 2.5	* <u>Pk-Pk Resolution</u> 2 µm 1 µm 0.25 µm 0.15 µm	* <u>Pk-Pk Resolution</u> 6.5 µm 2.5 µm 0.8 µm 0.25 µm	
Weight	1.2 kg 2.8 lbs	Fibers	Glass					

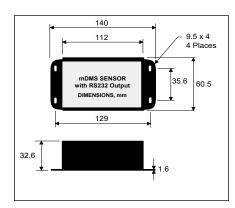
^{*} Pk-Pk Resolution is the smallest measurable displacement limited by the sensor's self-noise.

NOTES:

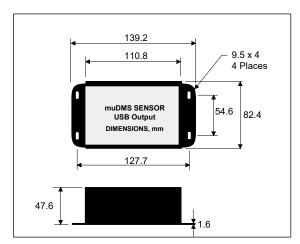
- 1. These specifications represent best case performance where:
 - · the target is flat, smooth and highly reflective
 - · the sensor is perpendicular to the target
 - the sensor is gapped to its range of highest sensitivity (~mid-range)
 - · fiberoptic cable lengths are standard and the cables are not connectorized
- 2. DMS Control Software includes a data averaging filter for averaging data samples from: 2 samples (the fastest rate) to 4096 samples (highest resolution).
- 3. Internally, the sensor continuously reads target data at a clock rate of 10,416.75 Hz.
- 4. ADC AVG = the number of internal readings averaged before sending data out to the PC.
- 5. Samples/Sec for any ADC AVG setting can be calculated as follows: S/S = 10,416.75 / ADC AVG

Three Instruments To Choose From:

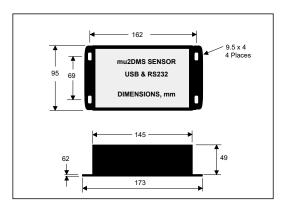
- Model mDMS-D240 ... miniDMS with RS232 output
- Model muDMS-D240 ... miniDMS with USB output
- Model mu2DMS-D240 ... Two Channel DMS with USB & RS232 outputs


mDMS-D240

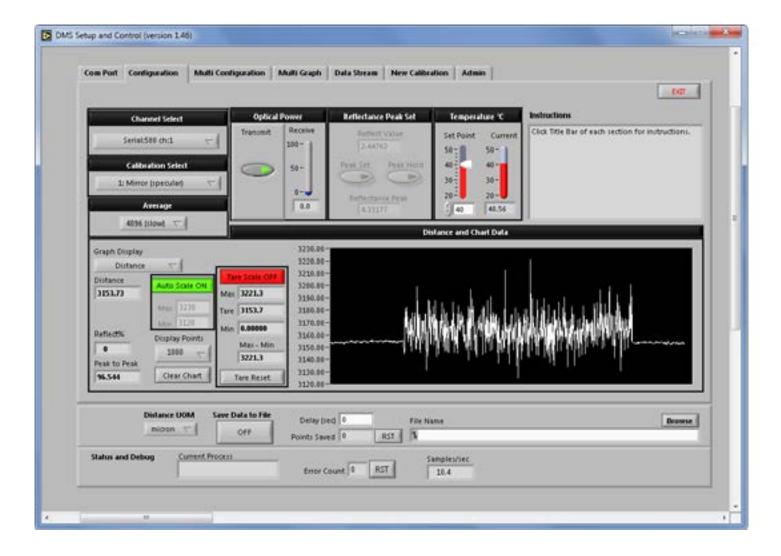
muDMS-D240



mu2DMS-D240


1. mDMS units include:

· Electronics with RS-232 communication


2. muDMS units include:

· Electronics with USB communication

3. mu2DMS units include:

Electronics with USB and RS232 communication

DMS SETUP and CONTROL SOFTWARE

Philtec provides freeware with every digital sensor purchase. This powerful software is a very useful tool for controlling sensors, viewing live data, and for saving data to files.

Sensors have storage capacity for 25 calibration tables. Every new sensor is provided with calibrations to:

- 1. A front surface mirror
- 2. A diffuse aluminum target

The DMS software provides means for copying and pasting sensor calibration data, as well as for creating and storing new calibration tables.

SOFTWARE & FIRMWARE UPDATES

DMS sensors can be updated remotely at any PC. The most current edition of software and firmware is posted at http://www.philtec.com/downloads/firmware-software. A short tutorial video link is also available there.