
Side-by-Side Fiberoptics In Sensor Tip

Fiberoptic Displacement Sensor

Model DMS-RC290

For The Measurement of Distance, Displacement and Vibration for Targets $> \emptyset$ 7.45 mm

Features

- 35 mm Operating Range
- Ø 7.4 mm Fiber Bundle (Spot Size)
- Reflectance Compensated Output
- Ambient Light Rejection

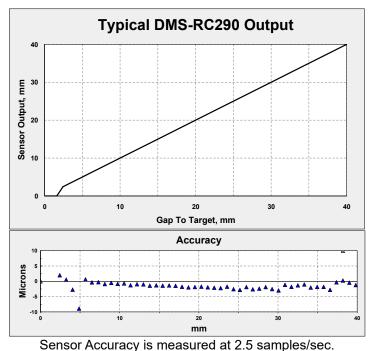
REFLECTANCE COMPENSATION

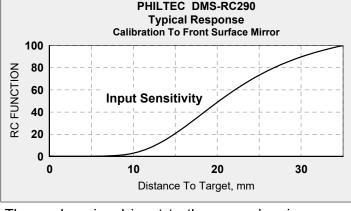
These are reflective type transducers based upon detecting the intensity of reflected light. RC Model sensors have a pair of fiberoptic detectors in the sensor tip. Light reflected off a target follows two separate paths back to the electronics where a ratiometric calculation provides the distance measurement which is independent of varying surface reflectance; i.e., **reflectance compensated**.

AMBIENT LIGHT REJECTION

Incoming light signals are bandpass filtered at a wavelength of 850 ±22 nm.

Tip & Cable Dimensions


FEATURE	mm	inch	
Tip Outer Diameter, Ø C	7.92	0.312	
Fiberoptic Area	Ø 7.44	Ø 0.293	
Tip Length, C	38.1	1.5	
Collar Length, B	19.1	0.75	
Collar Diameter, Ø B	10.3	0.406	
Cable Length, A	915	36	
Cable Diameter, Ø A	8.76	0.345	
Cable Min. Bend Radius	26	1	


DISTANCE (GAP) OUTPUT

These sensors provide a <u>linearized distance output</u> with RS232 or USB communication. Dynamic light signals reflected from target surfaces are converted to distance by comparing the sensor signals to gap calibration tables stored on-board the sensor.

www.philtec.com

The analog signal input to the sensor's microprocessor (shown above) is converted to a linearized distance output by comparing the input signals to gap calibration tables stored on-board the sensor. The sensor can be gapped for measurements anywhere within the sensor's total operating range. Optimum performance is achieved where the RC input signal has the steepest slope (highest sensitivity, ~10 - 40 mm).

Note: The DMS-RC290 response has a 'dead band' from 0-8 mm due to the gap between fiber bundles in the sensor tip. Reflectance Compensation is not active in that band.

Standard Specifications - RC290								
Electronics		Fib	Fiberoptics		USB or RS232			
Light Source	850 nm	Light Beam Spread	25°	Total Range	35 mm			
Input Voltage	+12 VDC	Cable Sheathing	PVC over Steel Monocoil	Linear Range	8 - 35 mm			
Input Current	500 ma max	Tip Epoxy Outgas	0.3% @ 200°C 2.4% @ 300°C	Reflectance Resolution	0.5%			
Bandwidth	5 KHz max	Tip Operating Pressure	10 bar	Temperature Resolution	0.06°C			
Iso-thermal Drift	0.05%	Tip Operating Temperature	-55 to 200°C continuous; to 300°C intermittent 1-2 hours	Resolution* ADC AVG = 2 ADC AVG = 16 ADC AVG = 256 ADC AVG = 4096	** samples/sec 5208 651 41 2.5	pk-pk 4 μm 2 μm 0.8 μm 0.4 μm		
Weight	1.1 kg -2.4 lbs.	Fibers	Glass					

NOTES:

- *These specifications represent best case performance where:
 - · the target is flat, smooth and highly reflective
 - the sensor is perpendicular to the target
 - the sensor is gapped to its range of highest sensitivity (~mid-range)
 - · fiberoptic cable lengths are standard and the cables are not connectorized

2 samples (the fastest rate) to 4096 samples (best resolution).

Internally, the sensor continuously reads target data at a clock rate of 10416.75 Hz. ADC AVG = the number of internal readings averaged before sending data out to the PC.

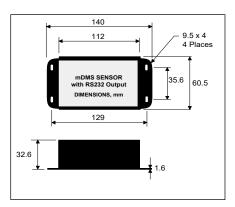
Samples/Sec for any ADC AVG setting can be calculated as follows:

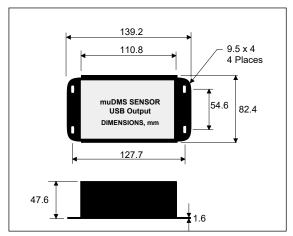
• S/S = 10,416.75 / ADC AVG

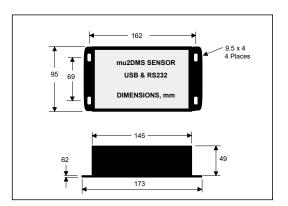
^{**}DMS Control Software includes a data averaging filter for averaging data samples from:

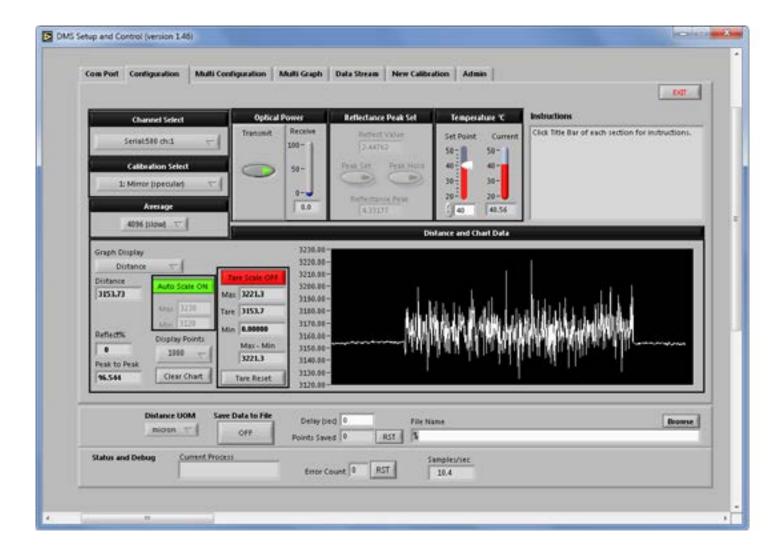
Three Instruments To Choose From:

- Model mDMS-RC290 ... miniDMS with RS232 output
- Model muDMS-RC290 ... miniDMS with USB output
- Model mu2DMS-RC290 ... Two Channel DMS with USB & RS232 outputs


mDMS-RC290


muDMS-RC290


mu2DMS-RC290


- 1. mDMS units include:
- · Electronics with RS-232 communication

- 2. muDMS units include:
- · Electronics with USB communication

- 3. mu2DMS units include:
- Electronics with USB and RS232 communication

DMS SETUP and CONTROL SOFTWARE

Philtec provides freeware with every digital sensor purchase. This powerful software is a very useful tool for controlling sensors, viewing live data, and for saving data to files.

Sensors have storage capacity for 25 calibration tables. Every new sensor is provided with calibrations to:

- 1. A front surface mirror
- 2. A diffuse aluminum target

The DMS software provides means for copying and pasting sensor calibration data, as well as for creating and storing new calibration tables.

SOFTWARE & FIRMWARE UPDATES

DMS sensors can be updated remotely at any PC. The most current edition of software and firmware is posted at http://philtec.com/downloadssupport/firmware.html.. A short tutorial video link is also available there.